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The Brain-Immune-Gut Triangle: Innate Immunity in Psychiatric and 
Neurological Disorders 
Attila Szabo and Eva Rajnavolgyi* 

Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen, Hungary 

Abstract: The communication between the immune and central nervous systems has been known for decades. Although 
the biological rules and complexity of the neuroimmune axis is yet to be clarified, in the modern era of immunology and 
clinical neurosciences it has become a dynamically evolving paradigm. In this review we trace the major findings of this 
emerging field with a special focus on innate immune cells and their phylogenetically conserved receptors, in line with 
their role in various psychiatric and neurological diseases. A particular interest will be given to monocytes, 
macrophages/microglia, dendritic cells, Toll-like and RIG-I-like receptors as well as their contribution to inflammation 
and other pathological processes in the CNS. Uncovering immunological mechanisms in the context of brain functions 
emerges as a promising avenue for future therapeutic interventions in various, still incurable ailments such as Alzheimer’s 
disease, schizophrenia, or different mood disorders such as major depression or bipolar disorder. We propose new 
perspectives for the pharmacological modification of innate immune cells and their response to inflammatory cues in the 
brain. A holistic concept of studying the gut-brain-immune triangle is also suggested to bring up novel approaches in 
immunology, gastroenterology, psychiatry and neurology. 

Keywords: Gut microbiota, gut-brain axis, innate immunity, neuroimmunology, pattern recognition receptors, 
psychoneuroimmunology. 

INTRODUCTION 

 The old concept that the three major systems of the body 
– the immune, the endocrine, and the nervous system – 
communicate with each other was established after a long 
period of continuous scientific observations, which finally 
gave rise to the field of psychoneuroimmunology more than 
three decades ago. In 1980 Robert Ader coined the term 
‘psychoneuroimmunology’ (PNI) to grasp the idea of 
convergent findings showing the inter-communicative nature 
of the brain and the immune system. This new field emerged 
as an integrative discipline trying to shed light on processes 
by which mental events modulate immune functions and 
how, in turn the immune system is able to alter or interfere 
with the function of the mind [1]. However, this modern 
period of psychoimmunological or psychosomatic research 
was preceded by accidental observations or purposeful 
investigations carried out through many centuries. The 
historical antecedents root in as old tradition of the ancient 
tenets of Chinese, Indian, and Greek natural philosophies [2, 
3]. 
 The foundation stones of modern PNI theory were laid in 
the middle eighties when Besedovsky and colleagues 
showed that glucocorticoid serum levels are elevated in the 
course of immune responses to innocuous antigens. This 
phenomenon seemed to influence the capacity of the immune 
system to respond to additional challenges, since the increase 
in corticosterone levels during the response to an antigen 
interfered with the response to a ‘second unrelated’ one [4]. 
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This observation also provided evidence for the 
communication between the immune and neuroendocrine 
systems by demonstrating that supernatants of activated 
immune cell cultures contained factors capable of 
stimulating the hypothalamic-pituitary-adrenal (HPA) axis 
[5]. It was also reported that glucocorticoids influenced the 
production of interleukin-2 (IL-2), an essential growth factor 
of T-lymphocyte proliferation, and other soluble factors [6]. 
Resting immune cells were shown to be less sensitive to this 
inhibitory glucocorticoid-mediated effect than activated 
ones. Thus, the immune-HPA circuit was proposed as an 
important regulatory network involved in fine tuning 
immune responses. Interleukin-1 (IL-1) was the first 
cytokine that was shown to have the potential to stimulate 
the HPA axis [7], and soon after this observation many other 
chemokines, cytokines and growth factors including IL-8, 
IL-6, tumor necrosis factor- α (TNF-α), interferon-γ (IFNγ), 
IL-12, and granulocyte macrophage-colony stimulating 
factor (GM-CSF) also turned out to possess this capability 
[8-10]. These early evidences showed that the immune 
system is able to elicit neuroendocrine responses, thus it was 
claimed to be a ‘peripheral receptor organ’ or a ‘sixth sense’ 
that transmits information to the brain about 
endogenous/exogenous stimuli [4, 11]. Also at this time, 
Blalock and Smith discovered a bidirectional communication 
pathway between the immune and neuroendocrine systems 
in which immune cells can produce pituitary peptide 
hormones. Since brain cells can also produce cytokines and 
other soluble mediators it became obvious that the common 
use of ligands and receptors shared by the two systems may 
occur [12]. 
 A decade later the rapid increase of new findings 
broadened the spectrum of our knowledge within the field of 
PNI. Significant discoveries showed that endogenous 
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catecholamines can selectively suppress CD4+ helper T-cell 
(Th1)-mediated inflammation and can protect the host from 
deleterious effects of inflammatory cytokines produced by 
innate immune cells [13]. A link between catecholamines 
and glucocorticoids acting as synergistic factors was also 
established [13, 14] and it also became clear that several 
cytokines can induce profound changes in cognition and 
behavior. Some of these effects turned out to be under the 
control of catecholaminergic and serotonergic neurons of the 
central nervous system (CNS) [15, 16]. Recently, the critical 
role of the immune-HPA axis in controlling inflammatory 
and autoimmune diseases also became evident. A decent 
amount of experimental and clinical evidence underscored 
the relevance of this feed-back mechanism during both 
infectious and autoimmune disorders [17, 18]. As Sternberg 
argues in a recent review, the CNS can be considered as an 
integral part of the innate immune system by affecting 
immune responses [18]. The stress response mediated by the 
neuroendocrine and the sympathetic/parasympathetic 
nervous systems generally exerts a marked inhibitory effect 
on systemic innate immune responses, while modulation 
through the peripheral nerves amplifies local innate immune 
responses. The main role of this integrated entity is to first 
amplify local innate inflammatory and systemic acute-phase 
responses in order to eliminate invading pathogens, and 
subsequently terminate inflammation and restore host 
homeostasis [18]. 
 Contemporary psychoneuroimmunology is distinguished 
from its ancestors by its novel methodology and theoretical 
design. Early neuroimmunologists considered the immune 
and nervous systems as separate parts, but a crucial 
conceptual leap led to the emergence of the modern 
approach. This new concept represents neuroimmune 
communication as an integrated physiological entity with the 
immune and nervous systems being its two aspects [19]. 
Recently, a third element has also been added to the big 
picture. According to a considerable number of recent 
reports the gut microbiota has a great impact on the 
development and overall physiology of the brain and the 
immune system [20-23]. Thus the intestinal microflora – 
under the control of brain-affected immune surveillance – 
readily fits into the tripartite-like functional and regulatory 
network of gut-brain-immune communication. These new 
findings enable us to take an important step towards a more 
holistic view of the ‘brain-immune-gut triangle’ (BIG-T) 
acting as a dynamic functional unity. 

THE INNATE IMMUNE SYSTEM AND ITS ROLE IN 
VARIOUS CNS PATHOLOGIES 

 The innate immune system represents the most ancient 
host defense mechanism against invading pathogens. 
Elements of this system use germline-encoded pattern 
recognition receptors (PRRs) to detect pathogen-associated 
molecular patterns (PAMPs), which involve evolutionally 
conserved foreign motifs expressed by big families of 
microbes. Innate immune cells provide us with the first line 
of defense if the natural physical and chemical barriers of the 
body, i.e. the skin and the mucosa have failed to stop them 
[24]. Innate recognition by PRRs leads to nuclear factor 
kappa-b (NF-κB)-mediated inflammatory, chemokine, and/or 
type I interferon (IFN) responses depending on the nature of 

the invading organism. The families of PRRs identified so 
far include membrane-bound Toll-like (TLRs), C-type lectin 
(CLRs), and cytosolic nucleotide-binding oligomerization 
domain containing (NOD)-like, absent in melanoma 2 
(AIM2)-like, and retinoic acid inducible gene 1 (RIG-I)-like 
receptors (RLRs) [25-29]. Intracellular endosomal TLRs 
together with RLRs and other cytoplasmic sensors can detect 
the nucleic acid motifs of intracellular pathogens, such as the 
genome or replication intermediates of viruses, and initiate 
the secretion of type I IFNs in many cell types of the body 
[30-33]. Cell surface TLRs on the other hand preferentially 
recognize essential cell wall components of bacteria or fungi 
[34-36]. Although the expression of PRRs is not restricted to 
immune cells, professional antigen-presenting cells (APCs), 
such as B-lymphocytes, dendritic cells (DCs) and 
macrophages possess the broadest repertoire [33, 37, 38]. 
The production of proinflammatory cytokines (IL-1β, IL-6, 
TNF-α) in the tissue environment of resident DCs and 
macrophages subsequent to innate recognition offers an 
important mechanism in first line of defense. Furthermore, 
certain PRRs also sense host-derived ‘self” material that may 
become available during cellular or tissue injury. These 
endogenous PRR ligands have been termed ‘damage-
associated molecular patterns’ (DAMPs) having the 
potential to elicit inflammation and cell death by activating 
innate receptors, although their role in immune homeostasis 
is yet to be elucidated [39]. Chronic inflammation provoked 
either by endogenous or exogenous stimuli leads to 
significant tissue damage and may develop to autoimmune 
processes [40, 41]. Thus, the innate immune system thought 
to play an important role in the etiology of autoimmune 
diseases as an initiator and sustainer of the process leading to 
autoinflammatory diseases, or by triggering long-term 
adaptive immune responses against self structures in 
‘classical’ autoimmune diseases [42, 43]. 
 According to the most recent medical hypotheses, 
inflammation and innate immune processes play a significant 
role in many psychiatric and neurological disorders. 
Alzheimer's disease (AD) is one of the most common 
cognitive decline disorders with a rapidly increasing 
incidence. The exact background of the development of the 
disease is still unclear, although in case of the inherited 
forms the role of mutations in presenilin-1 and -2 genes has 
been identified. The etiology of sporadic AD representing 
the largest burden to the society, however, is still an enigma 
[44, 45]. A new approach introduces AD as a disease that is 
caused by chronic inflammatory processes of the CNS [46, 
47]. High-resolution, genome-wide association studies have 
recently shown a significant correlation between the 
polymorphisms of innate immune genes and the incidence of 
late onset of AD [48, 49]. Furthermore, several groups have 
reported that inflammatory mediators can be detected in 
brain regions affected by the disease and their plasma levels 
in patients show a significant increase, indicating that 
alterations in the function of the innate immune system plays 
an important role in the development of AD [50, 51]. In a 
mouse model of AD the inflammatory background of the 
disease was demonstrated by systemic poly-riboinosinic-
polyribocytidilic acid (polyI:C) stimulation of the mother's 
TLR3 and RLR receptors in the pre-natal period. This 
treatment triggered inflammatory cytokine production in the 
embryonic brain associated with decreased neurogenesis and 
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cognitive development, and later caused a significantly 
enhanced appearance and deposition of Aβ aggregates in 
adult animals [52, 53]. Furthermore, re-stimulation of adult 
mice with polyI:C led to an AD-like phenotype [54]. 
Activation of the innate immune receptor NLR family, pyrin 
domain containing 3 (NLRP3) and subsequent activation of 
the NLRP3/Caspase-1 axis was also reported to play an 
important role in the pathogenesis of AD [55]. The 
inflammatory hypothesis is also supported by earlier clinical 
observations, which showed a positive correlation between 
the acute and chronic inflammatory state of the CNS and the 
acceleration of cognitive decline [56]. 
 Other neuropsychological consequences of the activation 
of innate PRRs are also known, such as onset/worsening of 
bipolar disorder, major depression, anxiety, and 
schizophrenia symptoms. ‘Sickness behavior’ is an important 
term not only in PNI but also in general psychiatry reflecting 
the effect of inflammatory cytokines on mood and behavior. 
This alteration in psychological state is characterized by 
lethargy, social isolation, and decreased physical activity 
[57, 58]. The common mediators of sickness behavior 
involve proinflammatory cytokines and IFNγ, which can 
affect the brain chemistry of mood regulators such as 
kynurenine, tryptophan, and monoamines [59]. In rodent 
models brain derived neurotrophic factor (BDNF) is claimed 
to have a pivotal role in depressive-like behavior and 
inflammatory cytokines, especially IL-1β was shown to 
inhibit the expression of BDNF [60]. In depression and 
anxiety-like behavior, the TLR3 and RLR-mediated effects 
also appeared to be BDNF and kynurenine pathway-
dependent in mice [61, 62]. Several studies point to a causal 
relationship between inflammatory clinical conditions, 
certain cytokine-based therapies and depression [59]. Cancer 
and human immunodeficiency virus (HIV) patients, who 
receive type I IFN therapy, develop cognitive and neuro-
vegetative symptoms of depression [63, 64]. Well-known 
comorbidities with depression have been documented in 
cases of rheumatoid arthritis, cardiovascular disease, or 
myocardial infarction where the patients exhibited elevated 
levels of inflammatory markers [65, 66]. It is also 
worthwhile to note that antidepressant therapies (tricyclics, 
selective serotonin reuptake inhibitors (SSRIs), 
electroconvulsive shock therapy have been reported to 
reduce inflammatory markers [59, 67]. The symptoms of 
depression caused by IFNα therapy is also responsive to 
treatment with SSRIs but antidepressants have only a minor 
restoring effect on the balance of HPA axis function [68]. 
Expression profiling of serum samples and monocytes from 
patients with major depression and bipolar disorder revealed 
common regulatory changes, increased levels of 
inflammatory markers including IL-1β, IL-6, TNF-α 
cytokines and C-reactive protein (CRP) [69]. Interestingly, 
in a small cohort clinical study Söderlund and colleagues 
found a substantial increase in IL-1β levels of cerebrospinal 
fluid of bipolar patients, but this elevation was higher in the 
subgroup of patients who experienced a recent manic 
episode [70]. Another group demonstrated that the 
concentration of the chemokine CCL2 and pentraxin 3 
(PTX3) produced by monocyte-derived macrophages were 
significantly higher in the serum of patients with bipolar 
depression than in normal controls [71]. This indicates the 

importance of the affective state to modulate the 
inflammatory tone. 
 Recent research also suggests a link between innate 
immune processes and the etiology of schizophrenia, a 
psychotic disorder with extremely high prevalence. Recent 
studies demonstrated that antipsychotic-naïve patients with 
first-episode acute psychosis exhibit an inflammatory 
phenotype already at this early stage, and the initiation of 
treatment can resolve this anomaly as reviewed by Suvisaari 
and Mantere [72]. Prenatal infections and consequent TLR 
activation are also suggested to be important in the etiology 
of this disease [73-75]. A large cohort study also found an 
association between the genetic polymorphism of TLR2 and 
schizophrenia in the Korean population [76]. The importance 
of innate immune mechanisms was further supported by 
showing the involvement of the complement system in 
schizophrenia [77]. Being at the interface of immunology 
and biological psychiatry these results underscore the 
emerging theory of the immune background of 
schizophrenia. Although many aspects of the underlying 
mechanisms have not been elucidated yet, several cells and 
factors have already been identified as potential candidates 
involved in the pathology of the disease. One important 
mechanism relies on the TLR-mediated activation of the 
monocyte/macrophage system. A recent study found that the 
expression levels of TLR3 and TLR4 were significantly 
higher in monocytes of schizophrenia patients than in normal 
controls. Monocytes of these patients exhibited lower 
amounts of intracellular concentration of IL-1β after polyI:C 
(TLR3 ligand) or LPS (TLR4 ligand) stimulation [78]. The 
authors interpreted their results by supporting the 
inflammatory hypothesis, since the blunted 
monocyte/macrophage response and the inefficient clearance 
of pathogens could lead to low-grade inflammation in 
schizophrenia patients. Furthermore, the role of microglia 
considered as resident macrophages of the CNS were also 
suggested to be critical in the neuropathology of 
schizophrenia. Upon activation these cells produce various 
proinflammatory cytokines and free radicals thereby 
contributing directly to neuronal damage and degeneration. 
Typical and atypical antipsychotics can prevent the release 
of these cytokines by inhibiting microglia that raises the 
possibility of new treatment options [79, 80]. The reverse 
modulation of the innate immune response is also possible. 
Clinical studies showed that depression decreases the 
activity of innate, as well as adaptive immune processes 
[81]. Evidences suggest that stress can also lead to 
neuroinflammation via PRR activation. The TLR4-NF-κB 
pathway was shown to be activated in the prefrontal cortex 
of mice following exposure to stress. The results suggested 
the role of bacterial translocation in the TLR4-mediated 
inflammatory process in the CNS pointing out to the 
importance of increased intestinal permeability (‘leaky gut’) 
in stress or depression [82, 83]. Thus, the cross-talk of the 
CNS and the immune system in psychiatric and neurological 
disorders represents a multi-facet feed-back circuit that 
works rather as a single, integrated entity, than two or more 
synchronized systems. However, very recently this 
functional unity was completed with an additional element: 
the gut microbiota. 
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THE INTERFACE OF GUT, IMMUNE AND 
NERVOUS SYSTEMS AND THE MICROBIOTA 

 Multicellular eukaryotes live in mutualistic or 
commensal association with diverse communities of 
microorganisms. The highest number of microbes, which co-
evolved with the human population, is localized to the lower 
intestinal tract and preferentially comprises anaerobic 
bacteria. The term “human microbiome” involves all 
constituents of the microbial community of a given 
individual including the collection of genes, proteins, 
metabolites and other microbe-derived molecules. Recent 
metagenomic studies also revealed that the composition of 
the gut microbiota is relatively stable but is shaped by 
genetic and environmental factors including maternal 
vertical transmission, infections, diet, stress and antibiotics. 
It is similar in family members but independent on nations or 
continents and based on the prevalence of certain strains of 
bacteria can be classified to enterotypes exhibiting different 
species compositions such as the dominance of Bacteroides, 
Prevotella or Ruminococcus [84], reviewed by [22]. 
 Although the gut microbiome acts as an independent 
functional unit, it is tightly connected to and is in continuous 
contact with the mucosal immune system. It exerts important 
functions such as protection against pathogens, intake of 
dietary nutrients, and metabolism of toxic agents. It is also 
involved in remote functions such as pain perception in the 
skin [85] or fat deposition in the liver [86]. Thus the 
microbial cohabitates are essential components of human 
health and well being. However, the means how the human 
microbiome, which involves several hundreds of various 
microbial species that outnumber human somatic cells about 
~10 and human genes about ~150 fold, impacts on various 
physiological functions is still poorly understood. 
 During embryogenesis the gut and the brain develop 
from a common tissue. Recent findings revealed that the gut-
brain axis is not restricted to the regulation of the 
psychological status of the gastrointestinal (GI) tract but is 
extended to the mutualistic interactions of the gut microbiota 
with brain functions as well as to neurological and metabolic 
diseases. The bidirectional communication between the GI 
tract and the CNS is well established, but studies on the 
communication between the gut microbiome and the central 
nervous system have emerged only recently [87]. This 
mutual communication operates at the level of multiple 
modulatory signals originating from the human microbiota. 
It involves neural pathways such as the enteric nervous 
system (ENS), which is an essential component of the gut-
brain axis as it controls motility, secretion, absorption, and 
blood flow. It receives signals from the intestinal epithelium, 
enteric endocrine and immune systems and through the 
sensory pathways signals to brain areas involved in emotion 
and cognition [88]. The hormonal pathways involve the 
regulation by enteroendocrine cells and bacterial 
neuropeptides, whereas the humoral pathway includes 
cytokines, neuropeptides, bacterial metabolites and 
hormones, which collaborate with signaling molecules to 
activate the mucosal immune system [22]. In contrast, the 
brain mediated factors targeting the microbiota act through 
stress, regulation of intestinal permeability and motility and 
the release of neurotransmitters and mucus (reviewed by 
[89]). Recent results also suggested that the gut microbiota 

modulates brain functions of the host through the gut-brain 
axis (reviewed by [90]) and has an impact on the behavioral 
phenotypes as well. 
 The first observations on the possible cross-communi-
cations between the microbiota and the central nervous 
system came from clinical observations showing that 
administration of oral antibiotics results in the improvement 
of patients with hepatic encephalopathy, a neuropsychiatric 
disorder [91] and inflammatory GI diseases often display 
correlation with depression or anxiety [92]. Animal 
experiments also revealed that certain pathogenic enteric 
bacteria such as Citrobacter rodentium provoke anxiety-like 
behavior in the early phase of infection, but the memory 
dysfunction of these mice could be prevented by daily 
treatment with probiotics [93]. The effects of microbial 
colonization on the development of brain plasticity was also 
tested by the reaction of HPA to stress and was compared in 
germ free (GF), specific pathogen free (SPF) and gnotobiotic 
mice. The authors observed elevated plasma propiomelano-
cortin (POMC/ACTH) and corticosterone levels in response 
to restraint stress that was associated with reduced levels of 
BDNF in the cortex and hippocampus as compared to SPF 
mice. The HPA stress response however, could be reversed 
by Bifidobacterium infantis and showed that microbes at an 
early developmental stage are required for developing a 
competent HPA system [94]. The attenuation of pro-
inflammatory immune responses in line with increased levels 
of the serotonergic precursor tryptophan could be induced by 
the treatment of rats with bifidobacteria suggesting the anti-
depressant potential of that probiotic strain [95]. 
Furthermore, experiments performed with germ-free mice 
indicated that the expression of genes implicated in anxiety 
and stress reactivity was associated with decreased mRNA 
expression of the N-methyl-D-aspartate receptor (NR2B) 
subunit in the central amygdala, with elevated levels of 
BDNF and with decreased serotonin receptor 1A (5HT1A) 
expression in the dentate granule layer of the hippocampus 
indicating the impact of the gut microbiota on behavior and 
neurochemical parameters of the brain [90]. 
 Further studies focused on the role of various probiotics 
in modulating stress and anxiety behavior. Modification of 
the microbiota by certain probiotic formulations such as the 
combination of Lactobacillus helveticus R0052 and 
Bifidobacterium longum R0175 (PF) was shown to decrease 
stress-induced GI discomfort and exert anxiolytic-like 
activity by decreasing serum cortisol levels in healthy human 
volunteers [96]. Long lasting treatment of mice with 
Lactobacillus rhamnosus induced altered emotional behavior 
and the expression of the neurotransmitter γ-Aminobutyric 
acid (GABA) in the CNS in a brain region-dependent 
manner. As these alterations could not be observed in 
vagotomized mice this finding suggested that the vagus 
nerve may be involved in the communication pathway 
between the gut and the brain [97]. A mouse model of 
chemical colitis was shown to be associated with anxiety-
like behavior that could be normalized by Bifidobacterium 
longum NCC3001, required vagal integrity but did not not 
involve gut immuno-modulation or the production of BDNF 
by neuronal cells. As B. longum can decrease excitability of 
enteric neurons, it may signal to the central nervous system 
through the enteric nervous system [98, 99]. 
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 Comparison of the behavior of GF and SPF mice 
exhibited significnt differenes as GF mice showed increased 
motor activity and reduced anxiety-like behavior, altered 
expression of synaptic plasticity-related genes, elevated 
noradrenaline (NA), dopamine (DA), and 5-
hydroxytryptamine (5-HT) turnover in the striatum as 
compared to mice housed under SPF conditions [100]. These 
results indicate that the gut microbiota takes part in 
modulating both behavior and brain chemistry however, the 
linked regulation of all these changes remained to be 
uncovered. 
 Examples of inverse communication i.e. from the brain to 
the gut also exist and is based on the hypothesis that 
descending signals from the CNS can alter the composition 
and function of the gut microbiota in both rodents and 
primates. Control mice were characterized by high load of 
epithelial lactobacilli, while the level of bacteria was 
decreased in stressed mice showing that environmental and 
dietary stress can markedly alter the GI microbiota in mice 
[101]. It was also shown that 3 days after maternal 
separation a significant decrease in the level of fecal 
lactobacilli could be detected that correlated with the display 
of stress-indicative behavior and susceptibility to 
opportunistic bacterial infections [102]. 
 A modulatory effect originating from the brain and acting 
on the gut microbiota can also occur. Stress-induced 
dysbiosis has been shown to results in increased levels of IL-
6 and monocyte chemoattractant protein 1 (MCP1/CCL2) in 
the circulation. The mechanism behind this effect might 
include stress-induced changes in intestinal motility and 
mucin secretion. Stress also can increase noradrenaline 
concentration in the gut lumen and catecholamines including 
noradrenalin were shown to alter gene expression profiles in 
some bacteria and could boost the growth of certain 
microbial communities. Commensal microbiota has also 
been shown to cooperate with the myelin autoantigen to 
trigger autoimmune-mediated demyelination [103]. 
 Microbial products have access to various tissues through 
blood circulation. Changes in microbiota composition 
induced by regular diet, antibiotics or probiotics can disturb 
the balance of the host’s mucosal immune system and the 
composition of the gut microbiota resulting in altered 
cytokine profiles mediated by ligation of PRRs. For example 
B. longum subsp. infantis str. 35624 has been shown to 
induce increased secretion of IL-6 cytokine by circulating 
peripheral immune cells and was shown to improve 
depression-like behavior in mice provoked by maternal 
separation [104]. A human study performed on age matched 
neonates also showed differences in the electrical activity of 
the brain measured by spatio-temporal analysis to EEG 
recordings. The authors concluded retarded transition of 
Cesarian section neonates, born under sterile condition, in 
early adaptation [105]. 
 The significance of a healthy gut microbiota in humans 
has also been demonstrated by the high incidence of 
behavioral changes and psychiatric problems in patients with 
irritable bowel disease (IBS) characterized by unstable 
microbial communities of low diversity. This association 
was also revealed in patients with inflammatory bowel 
diseases (Crohn’s disease and ulcerative colitis) linked to  
 

dysbiosis [106]. As a further proof of microbe-mediated 
effects exerted on the central nervous system was 
demonstrated by the beneficial effects of defined probiotic 
combinations on brain functions. To this end several 
observations indicated that various metabolic products of the 
intestinal microbiota can modulate brain functions and 
behavior of the host. Bacterial metabolites such as lactic and 
propionic acid have been shown to influence human 
behavior demonstrated by the association of high fecal 
concentration of propionic acid with anxiety in patients with 
IBS [107]. Carbohydrate malabsorption was associated with 
increased substrate availability for bacterial fermentation and 
was found to be linked to depression in females [108]. The 
tryptophan metabolite kynurenic acid exhibits antagonistic 
effects on excitatory amino acid receptors and is implicated 
in causing major psychiatric illnesses such as schizophrenia 
[109]. The neurotransmitter GABA has also been shown as a 
product of commensal lactobacilli and bifidobacteria in 
humans and other neurochemicals including noradrenaline, 
5-HT, dopamine, acetylcholine could also be isolated from 
gut bacteria emerging as a novel tool for the treatment of 
neuropsychiatric diseases [110]. By using behavioral tests it 
has also been demonstrated that the composition of the 
microbiota has an impact on early brain development. Young 
mice housed in germ free (GF) conditions exhibited more 
exploratory and risk-taking behavior than mice bred at SPF 
conditions [90]. 
 We propose the BIG-T theory (‘Brain-Immune-Gut 
Triangle’) in which the elements of the BIG-T comprising 
the brain, the immune system, and the gut microbiota have 
their well defined profile of functions (Fig. 1). The main 
function of the immune system is to provide the two other 
subunits with protection. The gut microbiota on the other 
hand supports nutrition, while the brain’s main functions are 
cognition and organization of behavior. Fine-tuning is 
continuously carried out by each element through feed-back 
mechanisms, which involve the effects of diet on immune 
functions and immune regulation affecting the behavior of 
intestinal microorganisms. The bi-directional communication 
of the microbiota and the brain via the gut-brain axis 
together with the functional and regulatory interactions of 
the immune system and the CNS is organized to a functional 
network where the brain, the immune system and the gut 
microbiota represent informational “hubs” of the system 
(Fig. 1). Since bidirectional regulation is possible and 
presumably does exist in vivo at all levels of the elements of 
the BIG-T, complete understanding of the operation of this 
complex communication system will allow us to design 
novel therapeutic strategies in many gut/immune/CNS-
related disorders. 
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